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In [I, 2] a mathematical model of the motion of a fluid in a pipe whose axis is a 
curve in space was discussed and certain simplifications of the problem were 
studied. The propagation of linear and nonlinear waves in the framework of the model 
was studied. In the present paper we consider a simple wave flow in a pipe with 
elastic walls suing one of the models introduced in [i], which, unlike [2], takes 
into account axial displacements of the pipe. The basic equations describing the 
propagation of waves in the pipe are obtained. 

The equations describing the flow of a fluid in a pipe are written in the form [i] 
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Here u, v are the displacements of the pipe in the longitudinal (s axis) and radial (axis r) 
directions; the indices e and i refer to quantities evaluated on the outer and inner surfaces 
of the pipe ~e and ~i; 9z is the density of the pipe; R = R(s, t) is the generatrix of the 
pipe; h is its thickness; aij is the stress tensor; %, ~ are the Lame coefficients; t is the 
time; p, V', and p are the density, velocity, and pressure of the fluid (Fig. i). 

Since the components of a vector perpendicular to the generatrix of the pipe satisfy the 
condition nr/n s ~ (R - R0)/L << i, where L is the characteristic linear dimension of the wave, 

we have 

e _ _ O . e  . _  . ~ Orr-- ,s--(rrs=0, ~rr=--P. (2) 

Equations (I) and (2) are closed by means of the relations 

u = ( ~  -F ,tz)/2,  v = ( r  + v~)/2~ ( 3 )  

which imply that the differences of the one-sided derivatives with respect to r are continuous 
in the middle of the surface, and by the geometric relation 

v-- ~ = R -- R0, (4) 

where v ~ is the displacement in the unperturbed state at R = R 0 due to the pressure P0- 

We note that in the unperturbed state, where u = u i = u e = 0, it is not difficult to 
determine the radial deformations v ~ v0 e, v0 i and stress: 
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Fig. 1 
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This solution reduces to the solution of the Lame problem to within terms of order (h/R0) 2 

We seek a solution of the system (i) through (4) in the form of a simple wave propagating 
with velocity D. Then we have the following equations for the functions u and v: 

d2u ~, dv (s) 

(~ = x -- Dt). Integrating the first equation of (5) with the use of the boundary conditions 
u = du/d$ = 0, v = v ~ when ~ + =, and substituting the result into the second equation, we 
find the following equation for the perturbation R -R 0 

d~s  - n o O. + 2t~) ~ , ~  ~ - ~l~ (~ + J~) n -  n o p ~  - ~ . n  o 

P i D 2 R  rig2 = Pt -- (X + 2~,) Ro + ~ a  

which in terms of the dimensionless variables x = R/R0, ~ = $/R 0 can be written in the form 

.. 
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which is the same as the equation for the displacement of the walls of the pipe in the presence 
of the wave as obtained in [2] in the framework of the Zhukovskii model. We note that the 
first term on the right-hand side of (6) represents the elastic force of the walls of the pipe, 
which opposes perturbations of the radius when E > 0; the second term is the perturbation due 
to the express pressure p - P0, which arises from the braking of the fluid. 

We consider (6) for the case when the velocity D is such that PtD2<<~+2~, PID2<< 

<<4~(~+~) In this case E~ i 4~(~+I~! Equation (6) is then written as 
k+2~ " piN 2 ~+2K " 

= : - E ( z  - -  i )  + = 'x f f@)  - -  ~), ( 7 )  

~' = Poa~Ro/plD2h~ Y = V / V  o. 

Here the coefficient of x is "frozen"; this is correct when I1 - E/A I << i, where A = ~'~(i) 
~(i). The function o/9o = f(y) and the dependence of the dimensionless pipe radius on the 
fluid velocity x = Xp(y) are determined from the equations of motion of the fluid: 

p V R 2  --_ PoVoB~, 
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xp (y) = y " exp (M~ (y~ -- i)/4), 
2 2 1 (//) = exp (Me ~ (~ -- !]~)/2), M~ = Vo/a o. 

We look for equilibrium points for which x = 0, ~ = 0 (singular points of (7)). The equili- 
brium points can be found as the points of intersection of the curve x = Xp(y) and the null 
line x = Xg(y), along which the right hand side of (7) vanishes: 

,,~g(y) = E / ( E -  ~ ' ( l ( y )  - ~)) .  

�9 E + =' We assume that M~<2m-Er__ ; then the denominator will be nonzero and the curve x = 

Xg(y) decreases monotonically. The curve x = xp(y) has a minimum at the point Ym = M0 -z 

We assume that M 0 < i, then the intersection point of Xp(y) and Xg(y) lies in the subsonic 

branch. If [Xg(1)[ is larger than I~p(1)[, then the second intersection point K lies to the 

left of y = i (Fig. 2) and in the opposite case it lies to the right of y = i (Fig. 3). 
Calculating the derivative, we write these conditions in the form 

,~,,>~, u,,<l, M g ~ ( M i O ~  M~<2J. E+'~'. (s) 
�9 0~' 

~ I.E+ ~' (9) x ~ , < t ,  y , ,>t~:  M~<M~,  M ~ < 2 . - ~ .  

Here 

According to the general theory [3] the type of singular point x = 
sign of Gxx(X), where G is the potential function: 

x = --dG/dx.  

M~ = (t + 2='/E)-I.. The condition [i - E/A[ << i means that M0 = must be close to MK 2. 

is determined by the 

For the case considered here 

( i0)  

a~G 2_ ' d/Id~P (li) ~ = ~ ~ z E/"~T" 

Expressing fv in terms of the slope of the curve x = xg(y) and substituting the result into 
(ii), we obtain at the intersection x = x of Xp(y) and xg(y): 

(~(~-,g)fd, 4 
~,x (~) = T ~ ~ 1 - ~ ; "  

The s i g n  o f  Gxx can be d e t e r m i n e d  from t h e  c o n d i t i o n s  (8)  and ( 9 ) ,  i f  we know t h e  s i g n  of  t h e  
q u a n t i t y  dxp /dy  and t h e  change of  s i g n  of  (Xp - Xg) when we pass  t h r o u g h  t h e  i n t e r s e c t i o n  
point. It is not difficult to see (Fig. 2) that when (8) is satisfied we have Gxx (I) < 0, 
Gxx(X K) > 0 and x = 1 is the angular point ("saddle point") and x = x K is the central point. 
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Wi~en (9) is satisfied the inequalities change sign and then x = 1 is the central point and 
x = x K is the "saddle point" (Fig. 3). 

Hence if (8) is satisfied and M K < M 0 < i, both equilibrium points belong to the sub- 
sonic branch of the double-valued function y(x). The choice of this branch yields a unique 
(to within a constant) potential function G(x). According to [3], in this case in the phase 
plane (x, i) there exists a closed integral curve passing through the point x = i, ~ = 0 
("saddle point") which goes around the point x = XK, i = 0 (central point). 

On the basis of this analysis we can formulate the following theorem: the solution 
x(~) of (7), defined in the region (-~, ~) and satisfying the stationarity conditions 
x, x--~O, x-~1, ~-->:i:oo , exists in the form of a solitary wave when (8) is satisfied and 
when the constant in the energy integral is close to be G(1). 

In order to obtain an approximate solution of (7) we use the first integral of (i0): 

x~t2 + a ( ~  = G(1). 

Then following [2], we expand the potential G(x) around the point x = i in a Taylor series 
up to (x - i) ~. Then the second equilibrium point K is given by 

~ - ~ = - 2 ~ f l ) / a = ~ ( ~ )  
and the solution is 

x ( ~ ) - l =  ~ c h -  4 ) (12) 
~:c  (1) " 

C, alculating the derivative, we find 

Mo~+3 E (Mo2/M~-- I) G~ ( t )  = 2 a ' M ~  (1 - -  M~) ~" G,~(t) = ,--M~ =' 

�9 . - t = ~ (M~ - 0 (1 - MD-" 
~ '  M~(M~+3) 

(13) 

However this expansion is only valid when M0 = is not close to unity, because when 
M~-~I Gx=(1), G~(1)-+oo . This difficulty is overcome as follows. We will calculate x K 

as the point of intersection of the curves Xp(y) and Xg(y) by expanding both functions in 
Taylor series around y = I up to X2, where ~ = I - y: 

xv=l+ 2 ~ + ; ~ + " "  

~,Mo ~ =, M~ (M~ --  MD ~ .  

(14) 

When ~'/E << 1 the quadratic term in the expansion of Xg(X) is negligibly small in comparison 
with the corresponding term in Xp(X). Solving the equation Xp(~) = Xg(X) we find 

2 2 

Mo~ + 3 

This expansion is valid up to M0 2 = i because 

~.. (~I~ = ,1) = 2~'/E <=: , .  

Substituting the result for X K into (14) we obtain 

. I M 2 M 2  A~2 
x~ -- i = ~-~ "0 "u0 - ". ( 15 ) 

E M~ 3+M~" 

Comparing x K calculated from (13) and (15) we see that they are the same asymptotically when 
M0 2 ~ MK 2. Before considering the analysis of this approximate solution, we note one feature 
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of this type of channel flow in the quasi-one-dimensional approximation. In [2] the restoring 
forces were characterized by the Young's modulus Ey of the material making up the pipe. 
Here the role of this parameter is played by a quantity which we denote by E (see (6)). When 

= u (steel), piD 2 << I + 2~ the ratio (Ey - E)/E % 0.068. In Fig. 4 we show the dependences 
predicted by (13) and (15) for xK(M0) for a steel pipe filled with water (p, I = 8"10 I~ N/m 2, 
Pl = 8"103 kg/m3, a0 = 1.5"103 m/sec, P0 = 103 kg/m3) and with R0/h = i0. Assuming the 
wave propagates in a stationary medium we have V 0 = D; and therefore the velocity scale D of 
the wave is also shown in Fig. 4. From these graphs it is seen that a difference between 
(13) and (15) begins to appear only for large deformations of the radius [(R - R0)/R 0 ~ 10-3], 
when the deformations cannot be assumed to be elastic. The amplitude of the soliton increases 
rapidly with D in a narrow region near a0/(l + 2e'/E), and (12) is correct up to the elastic 
limit x K - 1 ~ 10 -3 . 

The longitudinal displacement of the middle of the pipe wall is found from (5): 

u (~) - -  u (0)  ~ - -  t h  n o = Z + 2 t t  [ x ( T ) - - l l d ~ =  X - - -  ( 1 6 )  o x + 2~ a . ( t )  a 2  (I) ~ (I) " 

The dependence of the longitudinal and radial displacements (16) and (12) on the coordinate 
is shown in Fig. 5 for a steel pipe filled with stationary water and with R0/h = i0, M02 = 

MK 2 + 0.005. 

Because of the passage of the soliton, the radius of the pipe takes the value R0 and in 
the longitudinal direction the wall is displaced by the quantity Au/Ro ~ ~V--G2(1)/G3(1). 

We note that in [2] only radial displacements were associated with the wave. The dependence 
of Au/R0 on M02 for the same parameters as above is shown in Fig. 6. We see that the longi- 
tudinal displacements are larger than the radial ones. This implies that in considering 



the propagation of stress and deformation waves in pipes one must take into account the 
quasi-two-dimensional nature of the deformed state of the walls. 

. 

2,. 
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GENERATION OF INTERNAL WAVES UNDER THE COMBINED 

TRANSLATIONAL AND VIBRATIONAL MOTION OF A CYLINDER 

]IN A FLUID BILAYER 

V. I. Bukreev, A. V. Gusev, and I. V. Sturova UDC 532.593 

The analysis of internal waves in an inviscid fluid bilayer has been considered in 
the linear theory for a general form of the motion of the source (see, e.g., [i]). For 
the special case of the motion of a circular cylinder perpendicular to its generatrix, one 
of the interesting regimes occurs when the cylinder, translating parallel to the surface, 
simultaneously performs vertical harmonic oscillations. As shown in [i], the wave field in 
this case depends in an essential way on the oscillation frequency ~. For relatively small 
frequencies waves are excited both in front of and behind the body. When the frequency 
increases above a certain critical value ~, (which depends on the translational velocity 
of the body, the thicknesses of the fluid layers, and the density difference between them) 
wave motion is only possible behind the body. When ~ = ~,, the linear theory of an ideal 
fluid predicts an unbounded growth (as a power law) of the wave amplitude in time, as occurs 
in resonance phenomena of various kinds. The growth of the wave can be bounded either by 
viscosity or by nonlinear effects. The effect of viscosity was considered in [2] for a 
similar plane problem involving excitations created by a horizontally oscillating cylinder 
moving in a lower layer of an infinite fluid bilayer. In the problem considered in [2], it 
was assumed that the viscosity was nonzero only in the upper layer. Nonlinear effects have 
been analyzed in [3, 4], where for the special case of a uniform fluid, nonlinear boundary 
conditions on the free surface were taken into account. The behavior of internal waves in 
a linearly stratified fluid has been studied theoretically and experimentally for various 
types of the motion of the body (see, for example, [5]). The formulation of the problem 
closest to the one considered here is that of [6]. 

In the theoretical part of the present paper we are concerned mainly with taking into 
account viscosity in the framework of the linear model. We also performed experiments in 
which the critical and near-critical regimes were studied. The present paper is a continua- 
tion of [7], where theoretical and experimental results were presented for internal waves 
generated by the vertical harmonic oscillations of a submerged cylinder in a bilinear of 
viscous fluid with surface tension at the boundary. 

In the theoretical solution of the linear problem for the behavior of internal waves 
generated by a moving circular cylinder, the cylinder is modelled as a point dipole. The 
fluid is assumed to be incompressible, is at rest in the unperturbed state, and consists of 
two infinitely deep layers with small viscosities; the density of the fluid in the upper 
(y > 0) and lower (y < 0) layers are Pl and 22 = Pl(l + e)(~ > 0), respectively, and the 
dynamical coefficients of viscosity are ~I and D2. The surface tension on the boundary 
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